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The propagation of plane linear acoustic wave in a mixture of inert gases is 
considered by means of a variational formulation of the Boltzmann equations, 
through which the sound speed c is expressed with errors of order .c2 in terms of trial 
functions determined with errors of order c. This feature allows the exact 
determination of the coefficient of sound dispersion d, 3 [dc/dw2] a t  zero frequency 
(w = 0) ,  in terms of trial functions known from the Chapman-Enskog theory. 
Explicit results for d, are given for all combinations of noble gases from He to Xe, 
assumed to interact through the Lennard-Jones potential. Comparison with previous 
approximate descriptions and with experiments is made. 

1. Introduction 
We consider the problem of determining the initial-frequency dependence of the 

speed c ( o )  of propagation of a plane sound wave of infinitesimal amplitude and given 
frequency w progressing in a uniform mixture of monoatomic gases. When the 
problem is treated by means of the Navier-Stokes equations for a pure gas or an inert 
mixture of gases, a known result is that dc/dw = 0 a t  w = 0, so that dispersion 
phenomena a t  small frequencies are a t  least quadratic in w .  Finding the coefficient 
of initial dispersion d, = [dc/dw2],,, thus requires the use of a theory correct a t  least 
to second order in the frequency w ,  a quality not enjoyed by the Navier-Stokes 
equations. One could, in principle, use higher-order hydrodynamic formalisms 
(Burnett, super-Burnett) to determine d, ; however, because of the complexity of the 
theory, a complete description of all relevant Burnett transport coefficients is only 
available for pure gases (Greenspan 1965). Alternatively, the acoustic problem can be 
studied directly a t  all frequencies for plane waves of infinitesimal amplitude by direct 
attack on the Boltzmann equations, linearized around Maxwellian velocity 
distribution functions with uniform velocity temperature and densities, corresponding 
to the conditions of the unperturbed gas. 

For gas mixtures Foch, Uhlenbeck & Fuentes Losa (1972), following previous work 
for pure gases (Poch & Ford 1970), expanded the linearized Boltzmann equations for 
the acoustic problem in powers of the sound frequency, in an attempt to test the 
validity of the Boltzmann equations under conditions increasingly distant from 
equilibrium. For the particular case of molecules interacting with Maxwellian 
potentials, these authors obtained an explicit expression for the dispersion coefficient 
in terms of the standard first-order transport coefficients (viscosity, heat con- 
ductivity, etc.) for Maxwell molecules, as well as other parameters arising in the 
theory only to second order. 
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Although the Maxwellian interaction model does not provide a realistic description 
of transport in real gases, Foch & Ford (1970) have shown that the dispersion 
coefficient d,  of a pure gas depends weakly on the potential of interatomic interaction 
provided that the exact value of the viscosity coeEcient is used in place of its 
Maxwellian counterpart. A similar result may be expected for mixtures whose 
constituents have similar masses, but not for gas mixtures with widely different 
molecular weights, whose transport coefficients differ markedly from their Max- 
wellian counterparts (even when the parameters of intermolecular interaction are 
selected at every temperature such as to yield correct values for the viscosities of the 
two pure gases and for the mixture diffusion coefficient). 

For the case of gas mixtures with disparate masses, a number of two-fluid theories 
have been developed and applied to the acoustic problem (Goldman 1968; Huck & 
Johnson 1980; Fernandez-Feria & Fernandez de la Mora 1986). Even though they 
are only valid to first order in the frequency, these treatments have been quite 
successful because, for disparate-mass mixtures, second-order self-collision (Burnett) 
effects become small compared with irreversibilities originating in the slow 
momentum and energy transfer in cross-collisions between the components. An 
interesting feature of two-fluid theories is that  they have a frequency range of 
validity far broader than that of the standard Navier-Stokes equations, because 
they account properly for such slow relaxation phenomena. However, two-fluid 
theories do not improve over the Navier-Stokes level in situations where 
contributions of second order in the frequency arising from viscosity and heat 
conductivity become dominant; for instance in the case of high dilution where the 
mixture degenerates into a pure gas, or when the mass ratio is of order unity. 

The simplest available theory able to provide an exact description of the initial 
dispersion in binary mixtures for all mass ratios and concentrations is the perturbed 
eigenvalue solution of the linearized Boltzmann equation used by Foch et al. (1972). 
Though simpler in higher order than the Chapman-Enskog approach, this method 
is still extremely complex algebraically, which so far has precluded its development 
for any model of intermolecular interaction with the exception of the Maxwellian 
potential. For the case of pure gases with the same interaction potential, Foch & 
Ford (1970) have carried the expansion to higher orders (up to order 16 in Foch & 
Fuentes Losa 1972). By appropriate manipulations and exploiting the symmetry of 
the linearized Boltzmann operator, order by order, Foch & Fuentes-Losa (1972) have 
succeeded in expressing the sound-speed eigenvalue of order 2n in terms of the 
velocity distribution function eigenfunctions of order n. However, this efficient 
scheme has not been extended to the case of binary gas mixtures. 

In  what follows, the eigenvalue problem is reconsidered using a well-known 
variational formu!ation, through which eigenvalues correct to second order in a small 
parameter 6 are written in terms of trial functions correct only to order E .  Variational 
methods have been widely used in kinetic problems: a very general variational 
principle applicable to the steady linearized Boltzmann equation in a pure gas can 
be found in previous works by Cercignani & Pagani (1966) and Cercignani (1969). 
Bernstein (1969) mentions several other gaskinetic applications of variational 
principles in his own variational calculation of transport coefficients in a binary gas 
mixture. I n  this paper, the results of Foch & Ford (1970) are condensed into a single 
expression valid to any order in the frequency expansion, and are automatically 
extended to  the case of mixtures with an arbitrary number of components. As an 
example, the known first-order solutions of the Chapman-Enskog theory are used to 
obtain an exact explicit expression for the dispersion coeficient in binary mixtures 
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of gases interacting with arbitrary intermolecular potentials. This result provides an 
exact standard against which higher-order hydrodynamic theories for gas mixtures 
can be tested. 

2. Variational principle for the acoustic linearized Boltzmann problem 
Consider a perturbation of very small amplitude propagating in a binary gas 

mixture originally a t  rest with equilibrium temperature To and component densities 
plo and pzo for species 1 and 2 respectively (po = plo +pzo) .  The velocity distribution 
function f i  for component i can be written conveniently in the form: 

f i  =foi(l+$i), (1) 

where fo i  = nOi(mi/2~rCT,)~ exp ( - m,u~/2W0) is the space- and time-independent 
equilibrium distribution function associated with the system a t  rest. Let the 
perturbation be a plane acoustic wave propagating in the positive x-direction with 
agiven frequency w ,  so that $i cc exp [iw(t - x / c ) ]  and therefore, U,  pz -pie, T -To cc exp 
[iw(t-x/c)], where the p, are the instantaneous values of the species densities and U 
and T are the mixture mean velocity and temperature. The sound speed c of the 
mixture can be written in terms of the non-dimensional variable y :  

which takes the value y = yo = 5 a t  equilibrium, wile ma = (m, no, +m, no,)/no, with 
no = no, + no2. The dimensionless molecular velocity is introduced as 

5 .  ui = 
(2lcT,/rnO)t' 

The Boltzmann equation can now be linearized to obtain 

i u ( l - F ) j o i $ i  = K ~ ~ $ ~ + K ~ ~ ( $ ~ + $ ~ ) ,  i = 1 , 2 ,  (3) 

where Kii and K ,  are related to the linearized collision integrals Ii j  defined in 
Chapman & Cowling (1970) and provide a most convenient notation for the mixture 
problem (Bernstein 1969) : 

Kii$ i  = -ni21i($J, (4) 

( 5 )  Kij(#i + 4,) = -ni njIij($i + 4j), 
valid for mixtures with an arbitrary number of components. 

Equation (3) can be rewritten in the more compact vector form 

iw(L-<M) @ = K 9 ,  (6) 

where @ is the vector ($,, &JT, the eigenvalue < is defined as (2 /y ) f ,  while for binary 
mixtures the matrices K, L and M are, respectively, 

0 M,f E z f o z  
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where M i  = m,/m,. By introducing the inner product 
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{@> w = [A> Ylll+ [ @ 2 >  y 2 1 2  (7) 

where [$%, $,Ii = s$i$i d3ui, the problem can be reformulated variationally. A 
functional whose Euler-Lagrange equation is (6) can be obtained by taking a 
variation 6@ around the solution @ and forming the inner product with (6) 

(8) iw{S@, (L-<M)@} = {6@, K@}. 

Now K is a symmetric operator (Chapman & Cowling 1970), so that 

6{@, K@} ={a@, K@)+{@, K6@} = 2{6@, K@}, 

and writing a similar equation for (L - CM), since this is a symmetric matrix of given 
functions which commutes with 6, (8) can be expressed as 

S{@,iw(L-<M)@-K@} = 0, (9) 

so that the functional A ( @ )  = {@,iw(L-<M)@- K@} is stationary when @ is a 
solution to (6). Furthermore its value there is A* = 0, since in that case it follows 
from (6) that iw(L-<M)@- K@ = 0. The equality A* = 0 can be expressed as 

iw({@, L@}-C{@, M@}) = {@, K@}, (10) 

from which 5 can be written in terms of the eigenfunction @ as 

The functional above is also stationary when @ satisfies (B) ,  a feature that may be 
exploited for the optimal determination of 5. Assume that an approximation @* = 
@ - @' is inserted into ( 1  1 )  instead of the exact solution @, where @' is small. Let 6" 
be the resulting value obtained for 5 and define 5' = [-<*. If (5), which is satisfied 
by the exact solution @, is combined with the quotient formula particularized for @ 
and @*, i t  is found that 5' is quadratic in @': 

Chsequently, if the trial function is in error with respect to @ by a term of the 
order of the nth power of the frequency, the numerator would be dominated by the 
collision term O(wZnp1) with respect to the denominator. Therefore (12) provides an 
approximation for the eigenvalue which is of higher order (5' = O(W"-')) than the 
trial function @* (except in the case n = 1) .  This is a general property of perturbation 
theory for symmetric operators (Bethe & Salpeter 1957). 

3. Navier-Stokes trial function applied to the determination of the 
dispersion coefficient 

From the previous section it follows that it is possible to exploit the symmetry 
properties of the operator K in order to  express the sound speed of the mixture with 
errors of order c2 in terms of a trial distribution function known with errors of order 
c. Such approximate functions may be generated in a variety of ways. Foch & Ford 
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(1970) used velocity polynomials to create a family of trial functions in the pure-gas 
case. Alternatively, the approximate solutions found by Sirovich & Thurber (1965) 
based on model equations could in principle be extended to binary mixtures and used 
as trial functions to improve their results over the whole frequency range. However, 
by their ad hoc approximate nature, these and other similar methods do not yield 
exact results. For that reason we will base our computation of the speed of sound on 
the results from the Chapman-Enskog theory, which are exact asymptotically in the 
low-frequency range, with errors O ( w 2 ) .  

In the Chapman-Enskog theory an expression is derived in terms of a small 
parameter, the Knudsen number K n ,  proportional to the frequency w in the acoustic 
problem and characterizing the degree of non-equilibrium. For a pure gas there is 
only one collision frequency, and K n  = pw/p ,  where p and p are the viscosity 
coefficient and pressure of the mixture. For gas mixtures, other relaxation scales 
appear, depending on the molecular masses and molar concentrations, leading to a 
variety of Knudsen numbers. Typically, the region of validity of the Chap- 
man-Enskog theory for mixtures is such that the product of w and the longest 
microscopic relaxation scale should be small compared with one. The subject has 
been discussed a t  great length in the literature on two-fluid theories, particularly by 
Fernandez de la Mora & Fernandez-Feria (1987) and by Fernandez-Feria & 
Fernandez de la Mora (1986) for the acoustic problem. In what follows the term ‘small 
frequency’ will be used loosely to  refer to  frequencies small compared with the 
smallest microscopic relaxation time ; that is, to frequencies contained within the 
region of convergence of the Chapman-Enskog theory. 

If @* is obtained from the Euler-level solution, where !D‘ = O(w) ,  the variational 
formulation yields y = 5, adding nothing to the hydrodynamical analysis. But 
choosing @* a t  the Navier-Stokes level, where @’ = O ( w 2 ) ,  the resulting error in 
[ is of order w3,  from which an asymptotically exact value for the dispersion 
coefficient will be derived. Let us write @* = !Do+@l, where @,, is an exact solution 
of the homogeneous problem K @ = O  which contains all the hydrodynamic 
information, that is 

(13) 

where ll.i = ( c Y i l ,  Si2, ui, t (ui -  U)’) and Y = ( p l , p z , p U ,  %El’). In this notation, Sii takes 
the value 1 for i = j and 0 otherwise. Go corresponds to the zeroth-order solution in 
the Chapman-Enskog method while !Dl is determined from 9, by solving 

& milfoi(l+ 4 0 i L  ll‘ili = y ,  

iw(L-[M)(O’@, = KQ,, (14) 

where iw( L - YM)(O) is the corresponding zeroth-order term in the subdivision of the 
iw(L-[M) operator (Chapman & Cowling 1970) chosen so as to ensure solvability 
of the non-homogeneous problem (14). Uniqueness in the solution results from the 
orthogonality condition 

c milf,, hi> l l ’ i 1 2  = 0, (15) 

which is equivalent to the statement in (13). Now the solvability condition for the 
next order can be shown to be equivalent to the fulfilment of the hydrodynamic 
Navier-Stokes equations, that is 

iw(Y,  (L-[NM)@*) = 0, (1st 

where cN is the Navier-Stokes solution for [ and Y is the vector (@l, k2)*. If @* is 
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inserted in the quotient (1 1)  to obtain the refined value <* and (15) and (16) are taken 
into account, the following results : 

Introducing the following dimensionless variables 

T-To 
ni-noi , O i = - ,  

TO 
T i  = ___ 

noi 

$oi and $li can be expressed as 

and 

with 

$Bi = -2Bi:VU, (21) 

$01 = - D i  ' d l Z ,  (22) 

where V In T = - iw8 e,/c, VU = -iwU e,e,/c, d,, = -iwd' e,/c, d' = xl(ql + 0) - 
Ei(xl q,+x2 qz+8)  and A,, Bi and Di can be expanded in Sonine polynomials 
(Chapman & Cowling 1970) as follows: 

A, = I: (a, + k,d,) a l p ) ,  

Bi = zi b, b l p ' ,  

Di = I:; d , a { P ) .  

P 

I n  the above formulae, sums over p extend from - 00 to  00, while the prime indicates 
that the p = 0 term is not included. k, is the thermal diffusion ratio. Formulae giving 
agp) K <, d i p )  K < and hip) oc ro< (where to< = <<-$$2/) as a function of Sonine 
polynomials can be found in Chapman & Cowling (1970), who also include the system 
of equations leading to the determination of the coefficients a,, b, and d,. 

Returning to  (17), the Navier-Stokes eigenvalue CN involved in i t  can be readily 
obtained to any order from the acoustic hydrodynamic Navier-Stokes equations. I n  
the formulation leading to (17) )  cN is specified to a t  least second order. A complete 
specification of CN is not usually found in the literature (see Foch et al. 1972) because 
it is not correct beyond first order. The so-called Kohler formula is obtained by 
truncating at first order in the frequency: C$) = (2/yg))i, where 

and A = Awmo/nok2To, A = wDm,/lcToxlx2, SZ = , u w / n o f l o ,  where A, ,u and D are 
respectively the mixture coefficients of heat conduction, viscosity and diffusion. In  
the initial dispersion problem, A ,  A and 52 are small parameters characterizing the 
degree of non-equilibrium. SZ is the Knudsen number of the mixture while A = 2521 
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5Pr, where Pr = p c p / h  is the Prandtl number, of order unity. A is related to the 
interspecies non-equilibrium and can be written as A = sZ/Scx,x,, where Sc = p/poD 
is the Schmidt number, also of order unity. All three parameters are therefore of the 
same order, except in the limit where one of the species is very dilute in molar 
fraction ; this limit is relevant in the case of disparate-mass mixtures, where even a 
small volume fraction of the heavy component may lead to a mass fraction of order 
unity. 

According to the arguments in (12), C* is correct to second order, that  is, C*-C = 
O ( 0 3 ) .  Therefore if O(03)-terms are neglected in (17),  a simplified version is 
obtained : 

where Co = (t);, while @: and @: are given by (18) and (20)-(22) when the 
temperature, velocity and density ratios are taken at  the zeroth (Euler) level: 

Vl = V 2  = x, 0 = $X, d’ = $Y(., - E l ) .  (25)  

Using (25) ,  the denominator of (24) is shown to be 

2(x1s1 + XBEB + 0) x = yx2, 
and making use of the vector equalities in Appendix A one gets 

-- C*-CN - {$3p,V 1nT-V lnT+$P2VoU:VoU+$33d12~d12+~~4d12~V 1nT 
C O  

-$Co(P,VoU:e,V 1nT +/36VoU:e,d12)}/~X2. (26) 

The p-coefficients involved here are defined as follows : 

where a = (2rcT/mo)i. They play a similar role to the transport coefficients arising in 
a Burnett theory, although the unavailability of Burnett results for the dispersion of 
sound in mixtures has prevented any direct identification. However, the fact that the 
Burnett dispersion must be identical with our results and depend on a combination 
of first- and second-order (Burnett) transport coefficients, permits an identification 
from which at  least one of these second-order coefficients could be derived just from 
the first-order Chapman-Enskog eigenfunctions. Dimensionless transport groups 
(expressed in terms of the Sonine coefficients up,  b, and d, in Appendix B) can be 
introduced : 
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whereupon (26) becomes 
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This result can be compared with the one obtained from the two-fluid theory given 
by Pernandez-Feria & Fernandez de la Mora (1986) : 

c 2 F  - 5ii 
Q 

___ = 1~: 2 1 2  c (el - x1 -fk,)' 4' + f (el - x1 -fk,) [(a,, - 0 6 , )  - (Qll - Qe,)] A ,  (28) 

where 0, = w pii/nolRb and the p i j  are two-fluid partial viscosities. In  the limit 
where the two-fluid theory gives a good approximation (cZp z <*), that  is, for M = 
ml/wL2 < 1 and e2 < 1 (and therefore x2 - M < l) ,  ( 2 7 )  becomes 

if the sum giving p: in terms of the d, coefficients is truncated at  the first term and 
the definition of do in Chapman & Cowling (1970) is used, the following approximation 
for p: results: 

p3* = 3e1e2, (30) 

which, taking into account the smallness of k,, shows the identity between both 
limits, confirming the accuracy of first-order two-fluid theories for disparate-mass 
mixtures where the heavy component is not dominant with respect to density. 

In  order to compare our results with experiments, the sound-speed ratio is 
expanded in terms of the dimensionless quantity f / p ,  where f is the frequency in MHz 
and p the mixture pressure in a tm:  

The Navier-Stokes solution cN is correct to first order and therefore predicts the 
absorption coefficient d,, while the variationally improved ratio c* is exact to second 
order and yields the dispersion coefficient d,. In  the case of a pure gas, similar 
calculations can be performed leading to the following results : 

Pr is again the Prandtl number, while a,  p and 6 are defined in Appendix C and take 
the value 1 when only the first Sonine polynomial is kept, or in the case where the 
interaction potential is Maxwellian. I n  this case Pr = $ and (32) becomes 

- = 1-0.7iQ-1.075Q2+ ..., 
Q (33) 
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FIGURE 1. Sound-speed velocity (Re(1 -c/co)) in pure noble gases as a function of the square of 
the frequency 52'. Symbols are from experiments of Greenspan (1956). 

in agreement with the results given in the literature from second-order hydrodynamic 
formulations such as Burnett equations (Greenspan 1965). Foch & Ford (1970) gave 
an approximate result for </co using their perturbed eigenvalue solution : 

- ' = 1-0.7 iQ- 1.075 (1 +%)Q2+ ..., 
Q (34) 

where A ,  depends on the interaction potential and on the temperature. taking 
maximum values below unity (therefore, the influence of the interaction potential in 
the dispersion coefficient is slight, a t  most around 5 Yo) and becoming zero in the case 
of Maxwell molecules, in agreement with (33). Therefore, given the considerable 
scatter observed in the experimental data available for the pure-gas sound speed 
(Greenspan 1956; replotted in Foch & Ford 1970), going to higher order in Sonine 
polynomials in (32) would be futile as far as comparison between theory and 
available pure-gas experiments is concerned. Figure 1 represents experimental 
measurements of Re( 1 - [/',,) as a function of Q2 for Ne, Ar and Kr (Greenspan 1956), 
as well as the lowest order in Sonine polynomials, Navier-Stokes and variational 
expressions (0.70552' and 1.07552' respectively). The limitation of the theory to small 
frequencies (Q + 1) is patent from the figure. 
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FIGURE 2 (a ,  b ) .  For caption see p. 216. 

4. Discussion of results and comparison with experiments 
The dispersion coefficient d,, as defined in (31) is evaluated using (27). The Sonine 

expansions giving the new transport coefficients pi are truncated, keeping only terms 
with p = 1,  0, 1.  The interaction model adopted is the (12-6) Lennard-Jones 
potential with the Elk and parameters given by Hogervorst (1971), who found 
excellent agreement between calculated and experimental values of the viscosity and 
thermal conductivity of noble-gas mixtures. The dispersion coefficient d ,  is plotted in 
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FIGURE 2 ( c ,  d ) .  For caption see p. 216. 

215 

whole range of concentrations for some of the binary combinations of H Ne, Ar, 
Kr and Xe &figure 2 which is presented in ascending order of mass ratios m,/m,. 
The convention is used of denoting the heavier component in the mixture by the 
subscript 2, so that M = mJm2 < 1. The coefficient of dispersion is computed a t  
To = 299 K. The results from different theories are compared with those from the 
variational method. The Navier-Stokes equations, though only valid to first order, 
yield a formula for the dispersion coefficient d,, which is not correct (35 % below the 
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FIGURE 2 .  Initial dispersion d, (as defined in (31), in (atm/MHz)2) for binary mixtures of noble gases, 
ordered in ascending mass ratio, as a function of the molar fraction xz of the heavier component : 
PA---, d, (direct solution of the Boltzmann equation (from the expression given by Foch 
et al. 1972), wit'h first-order coefficients evaluated using t,he Lennard-Jones potential) ; ----a----, 
d, (same as d, with Maxwell mixture first-order coefficients (Fuentes Losa 1972); -, d, 
(variational formula) ; ----.----, d,, (two-fluid solution (Fernandez-Feria & Fernandez de la 
Mora 1986)); -V-, d,, (Kohler formula). ( a )  Ne-Ar; ( b )  Ar-Se; ( c )  Ht-Ke; ( d )  He-Ar; ( P )  

He--Xe. 

actual value for pure gases) ; however it ..is plotted here for reference. The results 
obtained by Poch et al. (1972) (d,) using a direct solut'ion of the linearized Boltzmann 
equation are also included. The set of explicit formulae giving d ,  in terms of the 
mixture transport coefficients in this reference has been used. Rather than using the 
Maxwell model to  calculate the first-order coefficients A,  p, kT and D, those have been 
computed using the (12 - 6) Lennard-Jones model (complete experimental data for 
all the spectrum of concentrations in noble-gas mixtures are not available). The 
remaining (second-order) coefficients are evaluated, as in Foch et al. (1972) under the 
assumption of the mixture being Maxwellian. The fact that the agreement between 
d ,  and the variational results d ,  (where first- and second-order transport coefficients 
are evaluated using the Lennard-Jones potential) is quite good indicates that 
dispersion is mainly dependent on first-order transport coefficients and their 
combinations. However, results are very sensitive to the interaction model used for 
the evaluation of the first-order coc%cients, as can be observed by noting the large 
difference between d ,  and d ,  where d ,  is the dispersion coefficient give in Fuentes 
Losa (1972), obtained using the direct solution of the linearized Boltzmann equation 
with all the transport coefficients evaluated with the Maxwell mixture assumption. 
Also included in the figure is the coefficient of dispersion d,, from the first-order two- 
fluid theory (Fernandez-Feria & Fernandez de la Mora 1986) whose expression was 
compared with the variational one in the previous section. 

Some observations follow from the figure. The magnitude of d ,  increases with the 
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mass-disparity m2/ml. This shows the prevalent role of cross-collisions as a source of 
irreversibility causing dispersion ; the energy transfer process is increasingly slow 
with m2/ml. As shown by Fernandez de la Mora & Puri (1986) the ratio between the 
pure-gas dispersion, caused by viscous and thermal dissipation - self-collisions - and 
the maximum dispersion for the mixture is of the order of M 2  and therefore becomes 
very small for disparate-mass gas mixtures. Besides, given that the mixture 
behaviour becomes dominated by self-collisions as soon as the heavy-light density 
ratio p2/p1 is of order unity, that is for x2 - M ,  the pronounced change in d, from pure- 
gas to mixture dispersion takes place in a thin boundary layer of thickness M close 
to the pure-light-gas limit. However, as c, increases, the pure-gas behaviour 
gradually sets in again and the value ofd, slowly decays to the pure-heavy-gas limit. 
Therefore the curves representing d, as a function of x2 are increasingly non- 
symmetric as m,/ml grows. This skewness would disappear if the data were plotted 
as a function of c2 instead. 

The two-fluid method is accurate for large mass disparity where the momentum 
and energy transfer become the main source of irreversibility. However, for mixtures 
with similar molecular weights, or, in general, close to the pure-gas limit, the method 
reduces to the Navier-Stokes solution and the two curves d,, and d,, come 
toget her. 

Some of the most precise data on dispersion a t  low frequency are reported in 
Fuentes Losa (1972), where the value of the sound speed is measured for He-Xe and 
He-Ar mixtures a t  different dimensionless frequencies 52 and molar concentrations 
x,. As discussed by Fernandez de la Mora & Puri (1986), the accuracy of the measured 
sound speed is excellent but the determination of the concentration x, is somewhat 
less precise. Therefore, the frequency is made dimensionless here through the same 
concentration-independent factor used by Fernandez de la Mora & Puri (1986) and 
Fernandez-Feria & Fernandez de la Mora (1987), leading to the group 

52 s=-- wDm, - 
H’ Sc(x,m,/m, + x2)  ’ (35)  

while a good approximation for x, is obtained from the zero-frequency speed of sound 
extrapolated by Fuentes Losa from his experimental measurements. Because the 
extraction of a dispersion coefficient from the data is subject to considerable 
arbitrariness (for instance, Fuentes Losa’s use of a parabolic fitting systematically 
overestimates the slope and underestimates the zero-frequency speed of sound), we 
shall provide a check of the accuracy of the variational method by directly 
comparing the theoretical and experimental sound speeds a t  low frequencies. Notice, 
however, that the figure is not meant to compare the full experimental and 
theoretical curves, but only their respective slopes a t  the origin of frequencies (the 
only ‘exact’ quantity that the nature of the trial function used allows). 

Figure 3 corresponds to initial-dispersion experiments for He-Xe mixtures. 
Nominal Xe concentrations x, are indicated at each curve, though the concentration 
used for the calculation of the variational sound-speed curve is obtained from the 
extrapolated zero-frequency speed give by Fuentes Losa. In  the case He-Xe, m, + 
m,, so that s x 52/(Scx,) and the range of validity of the variational predictions 
(52 4 1) is increasingly wide in terms of s2 as x2 decreases (as is apparent from the 
figure). The agreement is in general good, even though slight differences are 
noticeable for intermediate values of x2. The cause of this mismatch is not clear, but 
a possible source might be the absence of experimental data close enough to zero 
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frequency, or our truncation of Sonine expansions for the coefficients pj a t  the first 
term. A similar set of figures for the He-Ar case, showing an equally satisfactory 
agreement, is not presented here for brevity's sake. 

Notice finally that the predictions are valid only at small values of s, as a result 
of the narrow frequency range of validity of the Chapman-Enskog theory for 
mixtures with disparate masses. An asymptotically exact result valid in the far 
broader region s < 1 could be derived by using the predictions from the two-fluid 
Chapman-Enskog theory (Fernandez Feria & Fernandez de la Mora 1986) as trial 
functions. 

This work owes much to the variational advice of Professor I. B. Bernstein. 
P.  R. Ch. was sponsored by the US-Spanish Joint Committee for Cultural and 
Educational Cooperation. Much stimulus was derived during the course of this 
research from unfounded hopes to eventually obtain some financial support. 

Appendix A 
Some integral relations used in the derivation of (26) are given here. Letf(5) be an 

arbitrary function of 5 ,  M a constant matrix, and consider integrals taken over the 
whole space. Because of symmetry considerations, the following equalities hold : 

(A 1) 

where to{ and Mo stand for the symmetrized traceless parts of 55 and M, 
respectively. 

Appendix B 
The dimensionless transport groups pi* can be expressed in terms of the Sonine 

coefficients. To that end, (19)-(22) are used and a dimensionless form of the bracket 
product is introduced : 

Gfoi$i, +iIi = ni ( ~ X P  (-6;) $i, + i ) j  (B 1) 

where 

dimensionalized 

Cfi, gr )  = n-: Jfds,) Si(6ii)  d3ti. 

The coefficients up,  b,, d ,  of the Sonine expansions of A,, B, and D, are also non- 

and the equality 

r ( m  + p  + 1) 

P! 
[exp ( - tz) S g )  (t2) tZrn-l, S g )  ( f ) ]  = 26,, 

is used, where Sg)  are the Sonine polynomials as defined by Chapman & Cowling 
(1970), and we define r ( x )  = f(x) TC-f. 

n FLM 188 
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The following is obtained : 

B; = $ C(i)ziM;t Vibi : M, 

pz = f C(i’ xiM,+ Wibi : M, 

(B 7)  

(B 8) 

where the C(i )  represent sums over index p (from p = - 00 to p = 0 when i = 2 ,  and 
from p = 0 to p = co when i = l ) ,  while the unlabelled symbols C are sums over the 
two species, from i = 1 to i = 2 .  In  (B7)-(B 8) we denote 

A 
A 

U1=k,-ww,+(u,*,a:,a,* )... ), 

A 1  
0, = Ic - (  -R;ce,d,*, d!,, d*, ,...) +(a,*, a!,, a?, ,... ), 

W ,  = (Rtc,d,*, dT:d; ,  ...), 

W ,  = ( -Ri dT,, d*,,,. . .), 
where Ri = mi/(m,+m,), and M is an infinite matrix whose first terms are M , ,  = 

-M2, = 2 l 3 ,  M , ,  = 2 l 3  and M I ,  = 0. 

Appendix C 

becomes 
In the pure-gas limit, using the Chapman-Enskog first-order solution, q5, 

A.VlnT-((2/n)B:VU. 

(Observe the different choice of A and B as compared with the expressions for a gas 
mixture.) A and B are expanded in terms of Sonine polynomials 

A = Ca,a@‘), (C 2 )  

B = xb,b‘P’, (C 3) 

where a ( P )  and b ( P )  are defined in Chapman & Cowling, and the sums extend from 
p = 1 to  p = 00. The following dimensionless coefficients are introduced : 
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When the A and B expansions are truncated at p = 1, a: = - 1 and b: = 1. The 
coefficients 01, p and S of (32) are defined as 

(C 5 )  

(C 5) 

6 = ~ b :  M/r(7/2), (C 6) 

where M is as in Appendix €3, and u = (a:, a:, a,*,. . .), b = (b:, b:, b:,. . .). 
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